23.17: Introduction to the Adaptive Immune Response - Biology

Explain adaptive immunity

The adaptive, or acquired, immune response takes days or even weeks to become established—much longer than the innate response; however, adaptive immunity is more specific to pathogens and has memory. Adaptive immunity is an immunity that occurs after exposure to an antigen either from a pathogen or a vaccination. In fact, without information from the innate immune system, the adaptive response could not be mobilized.

There are two types of adaptive responses: the cell-mediated immune response, which is carried out by T cells, and the humoral immune response, which is controlled by activated B cells and antibodies. Activated T cells and B cells that are specific to molecular structures on the pathogen proliferate and attack the invading pathogen. Their attack can kill pathogens directly or secrete antibodies that enhance the phagocytosis of pathogens and disrupt the infection. Adaptive immunity also involves a memory to provide the host with long-term protection from reinfection with the same type of pathogen; on re-exposure, this memory will facilitate an efficient and quick response.

What You’ll Learn to Do

  • Describe the structure and function of antigen-presenting cells
  • Describe the structure and function of T lymphocytes
  • Describe the structure and function of B lymphocytes
  • Describe immune tolerance
  • Describe the role and importance of immunological memory
  • Identify the primary centers of the immune system

Learning Activities

The learning activities for this section include the following:

  • Antigen-Presenting Cells
  • T and B Lymphocytes
  • Mucosal Surfaces and Immune Tolerance
  • Immunological Memory
  • Primary Centers of the Immune System
  • Self Check: The Adaptive Immune Response

IL-12 and IL-23: master regulators of innate and adaptive immunity

Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology have led to an increased understanding of how myeloid cell-derived factors regulate the immune system to protect the host from infections and prevent tumor development. In this review, we focus on the function of interleukin (IL)-23, a new member of the IL-12 family of regulatory cytokines produced by activated macrophages and dendritic cells. We propose that IL-12 and IL-23 promote two distinct immunological pathways that have separate but complementary functions. IL-12 is required for antimicrobial responses to intracellular pathogens, whereas IL-23 is likely to be important for the recruitment and activation of a range of inflammatory cells that is required for the induction of chronic inflammation and granuloma formation. These two cytokines work in concert to regulate cellular immune responses critical for host defense and tumor suppression.

Chapter Summary

The innate immune system serves as a first responder to pathogenic threats that bypass natural physical and chemical barriers of the body. Using a combination of cellular and molecular attacks, the innate immune system identifies the nature of a pathogen and responds with inflammation, phagocytosis, cytokine release, destruction by NK cells, and/or a complement system. When innate mechanisms are insufficient to clear an infection, the adaptive immune response is informed and mobilized.

42.2 Adaptive Immune Response

The adaptive immune response is a slower-acting, longer-lasting, and more specific response than the innate response. However, the adaptive response requires information from the innate immune system to function. APCs display antigens via MHC molecules to complementary naïve T cells. In response, the T cells differentiate and proliferate, becoming TH cells or CTLs. TH cells stimulate B cells that have engulfed and presented pathogen-derived antigens. B cells differentiate into plasma cells that secrete antibodies, whereas CTLs induce apoptosis in intracellularly infected or cancerous cells. Memory cells persist after a primary exposure to a pathogen. If re-exposure occurs, memory cells differentiate into effector cells without input from the innate immune system. The mucosal immune system is largely independent from the systemic immune system but functions in a parallel fashion to protect the extensive mucosal surfaces of the body.

42.3 Antibodies

Antibodies (immunoglobulins) are the molecules secreted from plasma cells that mediate the humoral immune response. There are five antibody classes an antibody's class determines its mechanism of action and production site but does not control its binding specificity. Antibodies bind antigens via variable domains and can either neutralize pathogens or mark them for phagocytosis or activate the complement cascade.

42.4 Disruptions in the Immune System

Immune disruptions may involve insufficient immune responses or inappropriate immune targets. Immunodeficiency increases an individual's susceptibility to infections and cancers. Hypersensitivities are misdirected responses either to harmless foreign particles, as in the case of allergies, or to host factors, as in the case of autoimmunity. Reactions to self components may be the result of molecular mimicry.

Watch the video: Check Shortage of Items - Inventory Graph (January 2022).